Buffalo Lake Water Quality Sampling Results

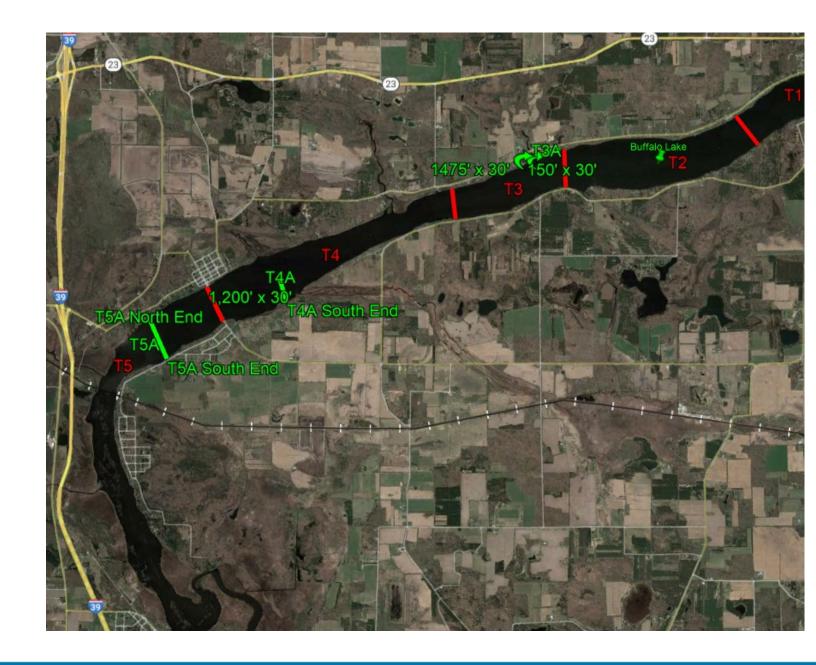
Ted Johnson DNR - Lake Biologist

Dave Bolha

DNR - Stream Biologist

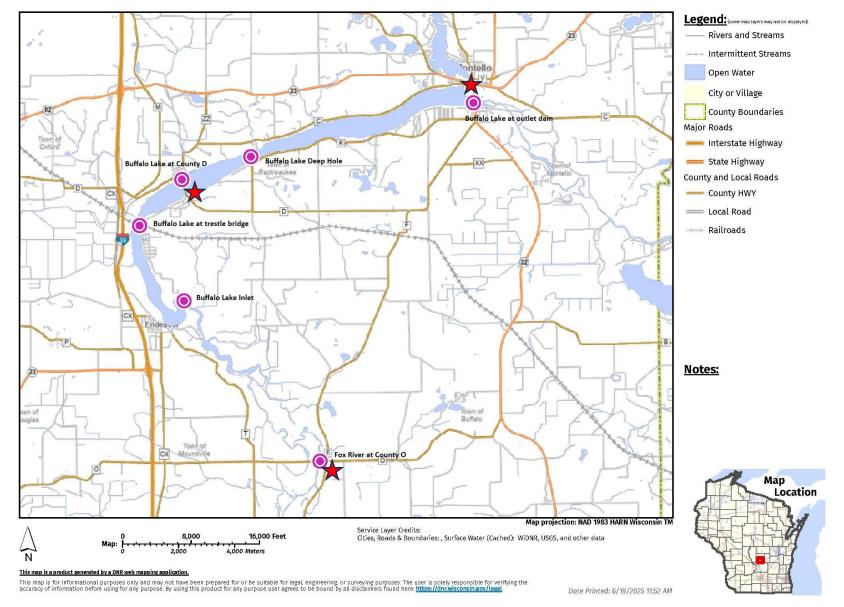
September 6th, 2025

Agenda


- Timeline: water quality concerns, loss of aquatic plants & low dissolved oxygen
- Study design
- Water quality results
- Possible causative factors to plant stress & loss
- Next steps

Timeline

- May 21 & 22: Buffalo Lake consultant applied herbicides for navigation on 8.2 acres. Followed permit conditions.
- June 10-11: Complaint calls about poor water quality, dead turtles, loss of aquatic plants, low dissolved oxygen.
- June 11: DNR staff toured Buffalo Lake and met with Lake District Reps (Jim Murre, Bob Fohey).
- DNR staff developed study design and got financial / technical approval to proceed.
- June 17: DNR staff conducted sampling @ 6 stations
- June 26: DNR and DATCP staff conducted herbicide & pesticide sampling plus water chemistry at 3 stations.
- July 1: DNR staff conducted water chemistry sampling at 2 stations.
- August 15: DNR staff checked basic water quality parameters at 2 stations.


Herbicide Treatments

- Four total treatments done on 5/21/25 and 5/22/25.
- Treatment areas: 4.7, 1.1, 0.8 and 1.6 acres.
 Total 8.2 acres
- Total area 0.37% of lake surface area (2,210 acres).
 - ➤ Aquastrike = Endothall & Diquat
 - Cutrine
- Not enough herbicide to cause systemic plant loss.
- Sean Strom (Fish & Wildlife Environmental Toxicologist) opinion, herbicide likely did not cause turtle mortality.

Buffalo Lake Sampling Points

DATCP - Herbicide Pesticide Sampling

- Sampled three stations on 6/26/25
- Sampled for 100 common herbicide / pesticides
- Three compounds were detected at low levels:
 - Atrazine, Metolachlor, 2,4(D)
- Most typical compounds found in streams
- All levels below EPA Aquatic Life Benchmarks.
 - Didn't cause loss of plants

Sampling Parameters

Short Course

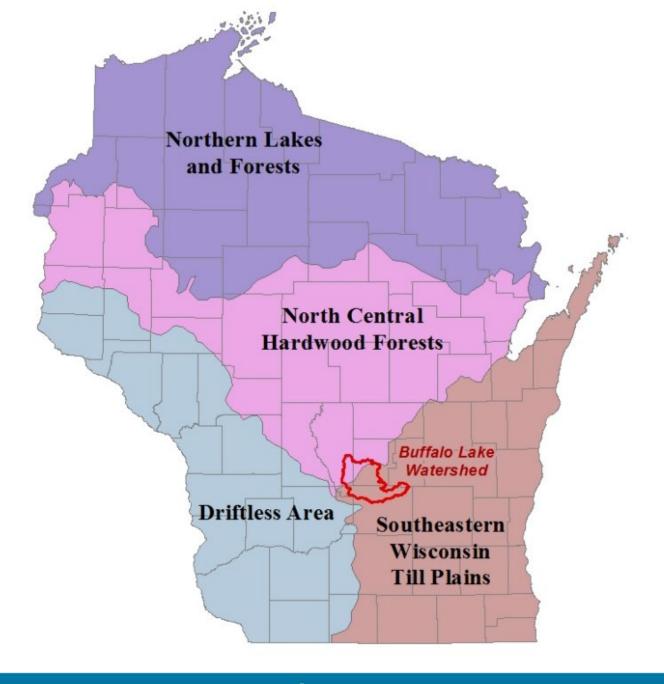
- 1. <u>Field Parameters</u>- Temperature, Dissolved Oxygen (DO), Dissolved Oxygen- Percent Saturation, pH, Conductivity, Secchi.
- 2. <u>E. coli</u> Type of bacteria that live in the guts of warm-blooded animals. Indicator of runoff pollution. Levels over 235 cfu's are considered high for lakes. Greater than 1,000 cfu beach closures.
- 3. <u>BOD(5)</u> 5-day biological demand. Measures amount of oxygen consumed by microorganisms over 5-days. High BOD(5) equals large amounts of organic matter. Lake levels: 1-2 mg/L good; 3-5 mg/L fair; >5 mg/L poor.
- 4. <u>Total Suspended Solids</u> Measure of fine particles (soil, algae) in the water column. Values < 20 mg/L = clear water.
- 5. <u>Chl a</u> Chlorophyll a is a measure of how much algae is in the system. <20 ug/L water quality standard.
- 6. <u>Color</u> Can appear as blue, green, brown or red. Colors range from 0 300 SU (Standard Units).
- 7. <u>Total Phosphorus (TP)</u> Most important nutrient limiting the growth of algae and aquatic plants. Water Quality Standard for Lowland Drainage Lakes is 0.04 mg/L.
- 8. <u>Nitrogen</u> In lakes consists of organic and inorganic forms = Total Nitrogen (TN). Inorganic forms, ammonia (NH3) and nitrate (NO3) are bioavailable. Nitrite (NO2) is a form between organic and inorganic.

Main Water Quality Sampling Event Results (Six Stations)

Date	Sample Location	Temperature (C)	DO (mg/L)	DO % saturation	рН	Conductivity	Secchi (ft)	E.coli (/100 ml)	BOD 5 (mg/l)	TSS (mg/l)	Chl a (ug/l)	Color	TP (mg/l)	NO3 - NO2 (mg/l)	NH3 (mg/l)	TN (mg/l)
6/17/25	Fox @ Cty O	24.4	8.0	95.0	8.1	443.3	-	96.0	3.09	20.9		30	0.083	0.525	0.101	1.270
6/17/25	Buffalo inlet	24.1	6.9	82.4	8.0	440.5	2.5					40				
6/17/25	Buffalo @ trestle	23.5	5.1	60.4	7.8	433.5	2.5					40				
6/17/25	Buffalo @ Cty D	22.9	5.1	60.0	7.3	422.3	2.5					40				
6/17/25	Buffalo deep hole	22.7	6.1	71.1	8.0	413.0	3.0	4.0	2.42	7.0	15.7	40	0.123	0.226	0.116	1.050
6/17/25	Buffalo @ dam	23.9	11.0	131.0	8.6	401.4	_					40				

- 1. <u>Dissolved Oxygen</u> Temporarily decreased in the lake then became super-saturated near the dam. Super-saturation can happen from high amounts of photosynthesis usually from large algal biomass.
- 2. <u>Secchi Depth</u> 2.5 3 feet is poor. (2016 & 2018: 4-6 feet)
- 3. <u>BOD(5)</u> Fair level of organics in lake contributing to lower DO
- 4. Color Increase from river 10 standard units. Lake is tea colored with reduced light penetration.
- 5. <u>TP</u> Lake acting as a source of P. Normally, the opposite.

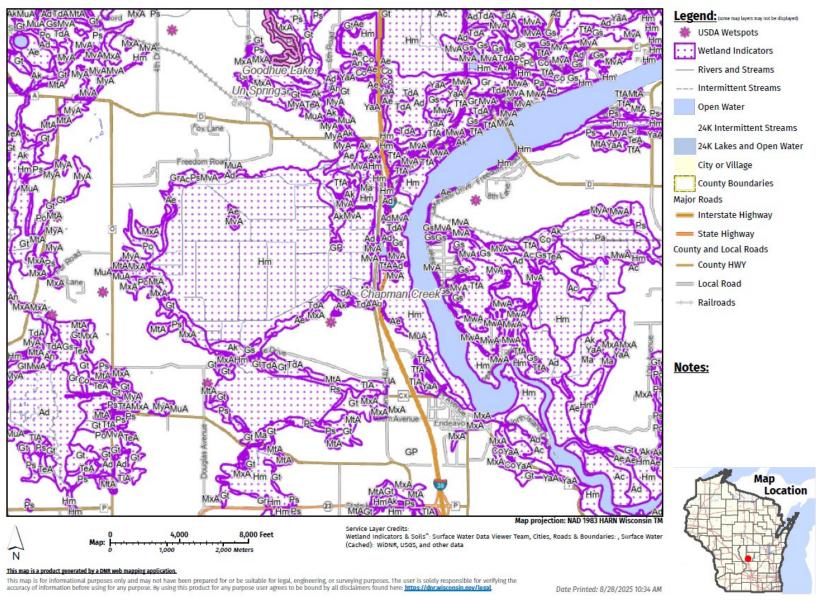
Date	Sample Location	Temperature	DO (mg/L)	DO %	pН	Conductivity	Secchi (ft)	E.coli (/100 ml)	BOD 5 (mg/l)	TSS (mg/l)	Chl a (ug/l)	Color	TP (mg/l)	NO3 - NO2 (mg/l)	NH3 (mg/l)	TN (mg/l)
6/17/2025	Fox @ Cty	24.4	8.0	95.0	8.1	443.3	-	96.0	3.09	20.9	(48.5)	30	0.083	0.525	0.101	1.270
6/17/2025	Buffalo inlet	24.1	6.9	82.4	8.0	440.5	2.5					40				
6/17/2025	Buffalo @ trestle	23.5	5.1	60.4	7.8	433.5	2.5					40				
6/17/2025	Buffalo @ Cty D	22.9	5.1	60.0	7.3	422.3	2.5					40				
6/17/2025	Buffalo deep hole	22.7	6.1	71.1	8.0	413.0	3.0	4.0	2.42	7.0	15.7	40	0.123	0.226	0.116	1.050
6/17/2025	Buffalo @ Dam	23.9	11.0	131.0	8.6	401.4	-					40				
6/26/2025	Fox @ Cty O	23.0	5.2	61.1	7.6	381.4										
6/26/2025	Buffalo @ Cty D	23.1	3.2	37.2	7.5	396.4										
6/26/2025	Buffalo @ Dam	24.0	5.3	62.9	8.0	391.5										
7/1/2025	Fox @ Cty O	26.5	3.8	48.2	7.5	371.0	3.2			9.8	12.7		0.16	0.304	0.069	1.530
7/1/2025	Buffalo @ Dam	27.9	13.7	179.1	8.7	351.0	1.3			22.4	55		0.13	0.034	0.023	1.310
8/15/2025	Buffalo @ Cty D	29.4	5.8	76.3	8.1	398.2	3.0									
8/15/2025	Buffalo @ Dam	30.2	10.8	141.0	8.5	390.2	1.5									


What is causing the loss of plants? Stressors?

- 1. External nutrient load (watershed).
 - Large storm events \Longrightarrow rapid runoff \Longrightarrow delivery of tanic acids \Longrightarrow reduced clarity
- 2. Internal nutrient load
 - Release of nutrients from lake-bed sediments
 - With loss of plants, phosphorus levels increased from the Fox River Inlet to the dam.
- 3. Aquatic plant harvesting
 - Cutting plants causes stress to plants
 - Comments indicating that once plants were harvested a few times they didn't grow back.
 - DNR understands the need to harvest.

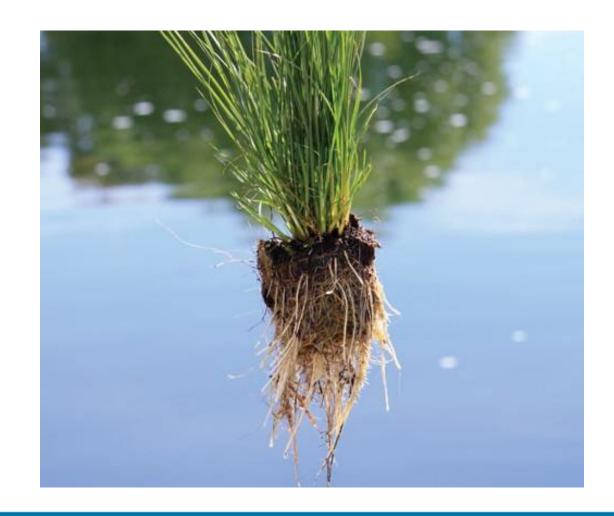
Buffalo Lake Watershed

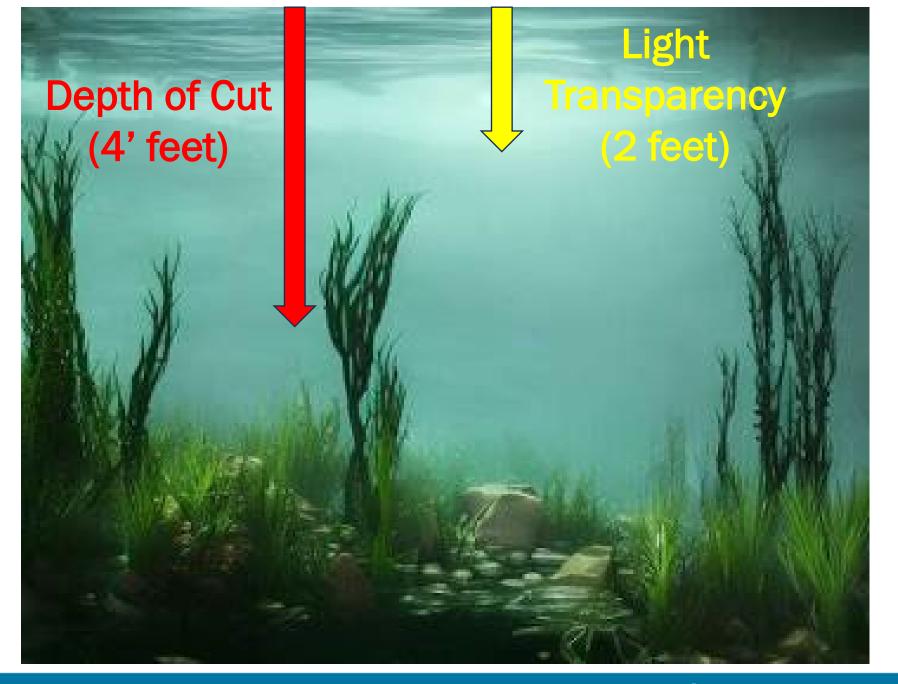
- 257,418 Acres
- 19% Wetland (36,000 acres)



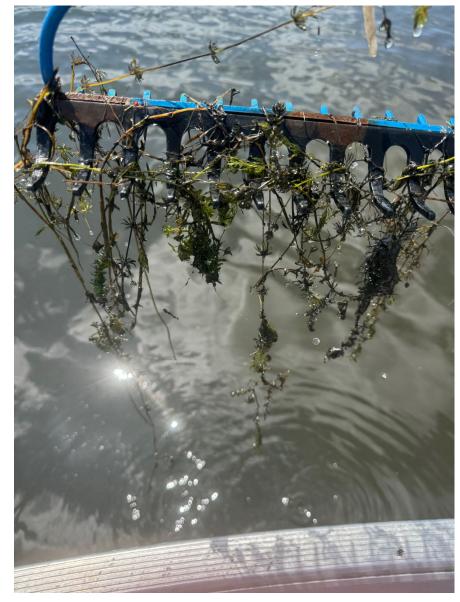
Buffalo Lake Wetland Indicator Soils

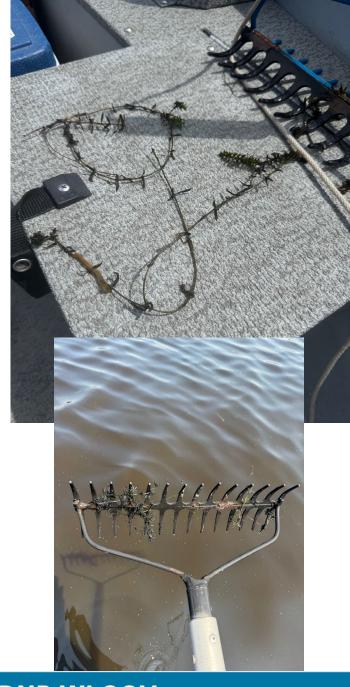
Benefits of Aquatic Plants


- Increased water clarity
- Better water quality
- Reduced algae
- Root systems stabilize lake-bed sediment, hold it in place.
- Use and storage of nutrients such as phosphorus
- Increases zooplankton habitat (refuge).
- Critical habitat for fish & wildlife.
- Reduces wind/wave energy.
- Protects shorelines from erosion.



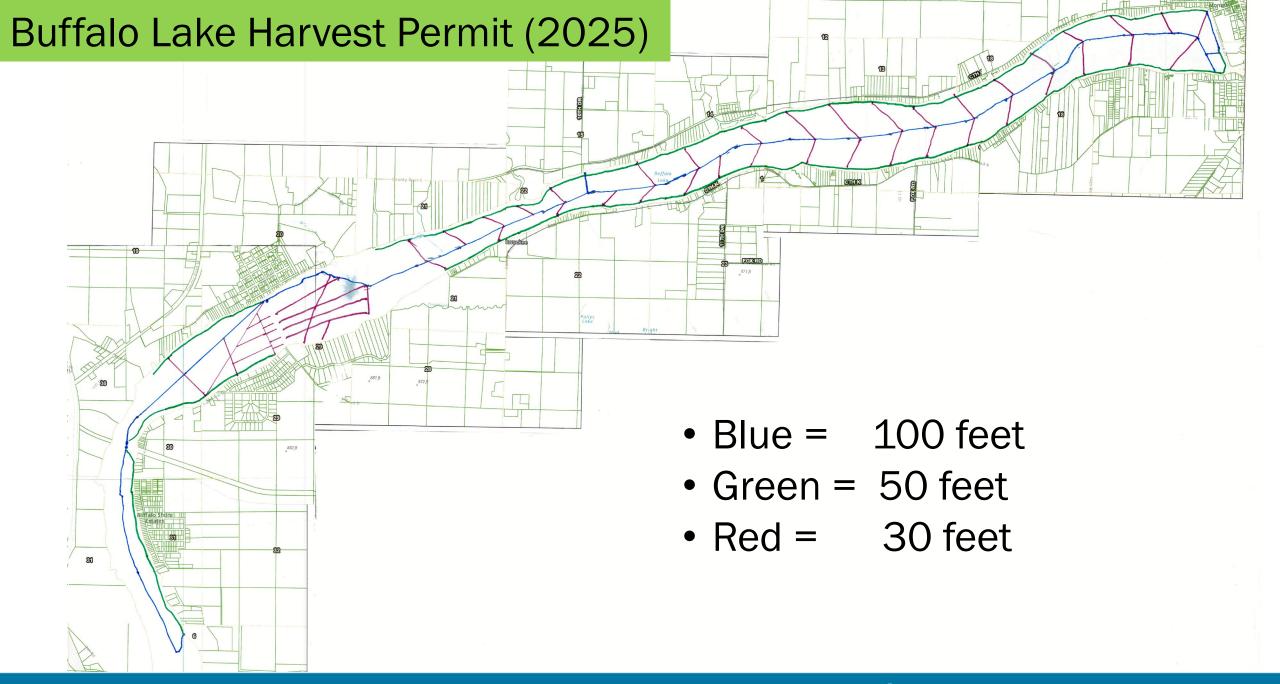
Role of Aquatic Plant Root System


- Water and nutrient uptake from sediment.
- Energy storage / reserve.
 - ➤ Photosynthesis converted to sugars
 - ➤ Energy reserves needed when plant is under stress or low-light conditions.
- Cutting plants causes stress and staining of water limits light penetration.
 - Finite amount of stored energy.



Aquatic Plants Dying in Harvest Lane 6/17/25

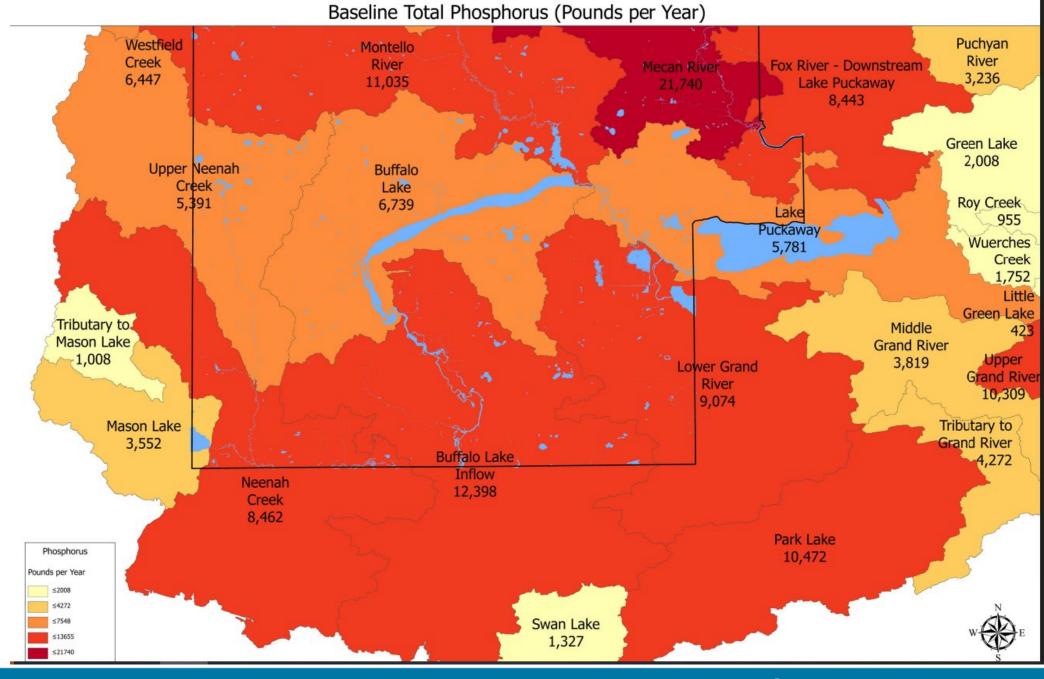
- Plants were 2-3 feet tall with only the tips still green.
- By June 26, most plants were dead and hard to capture on rake.

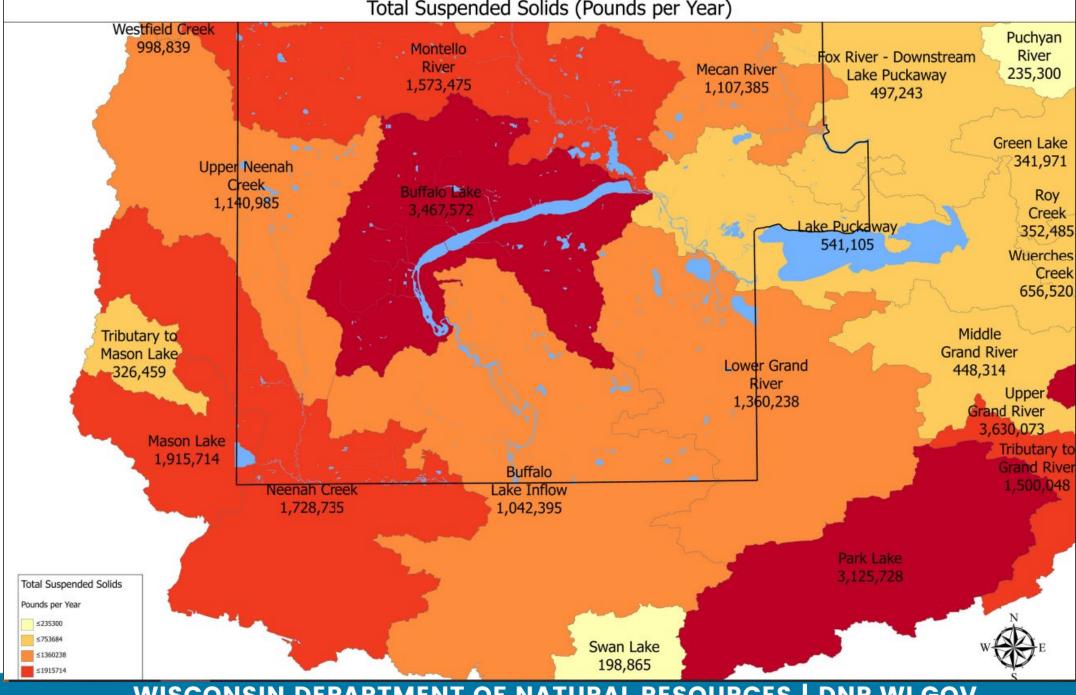


Water Quality Impacts from Loss of Submersed Aquatic Plants

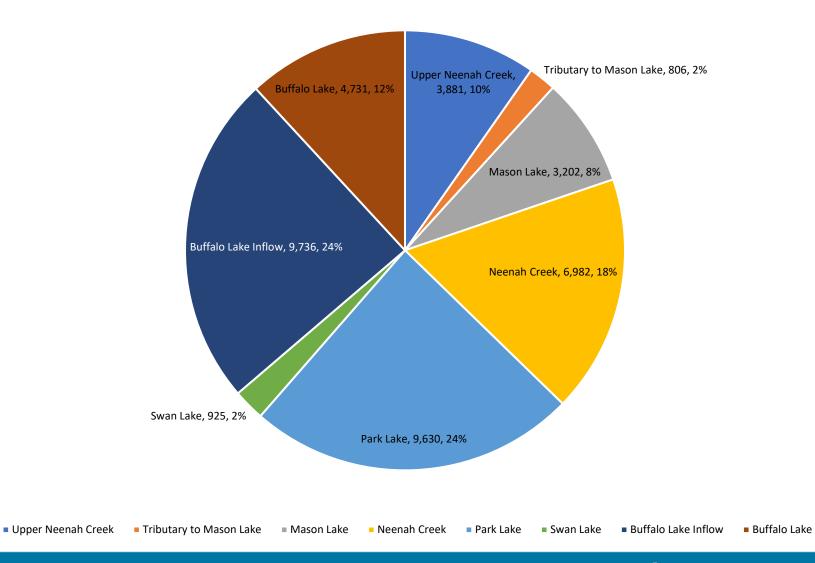
- Reduces the amount of phosphorus that would have been tied up in plant biomass.
- Increases algae both planktonic and mass forming (filamentous algae).
 - Further reduces light penetration, leads to more plant loss (Compounding).
- Decomposition of dead plants adds to internal nutrient load.
 - Lowers dissolved oxygen levels

Satellite Image of Buffalo Lake in early 2000's

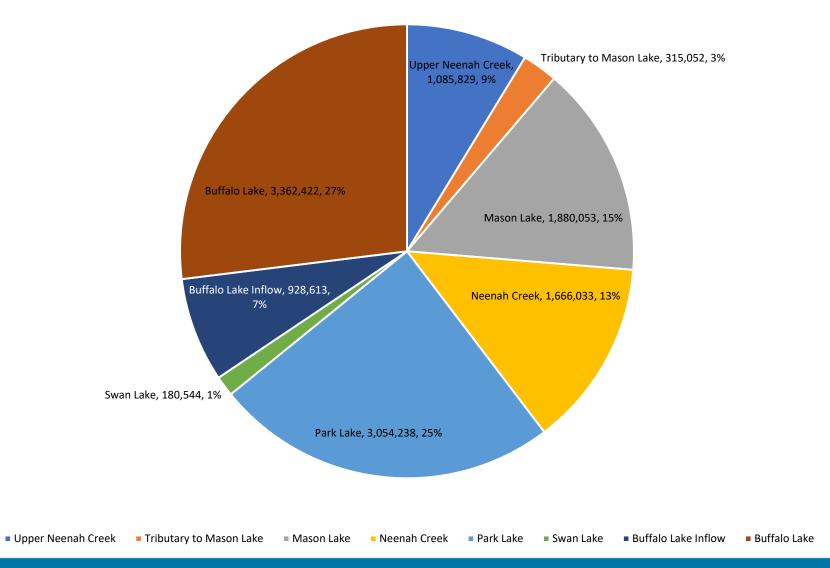



WISCONSIN DEPARTMENT OF NATURAL RESOURCES | DNR.WI.GOV

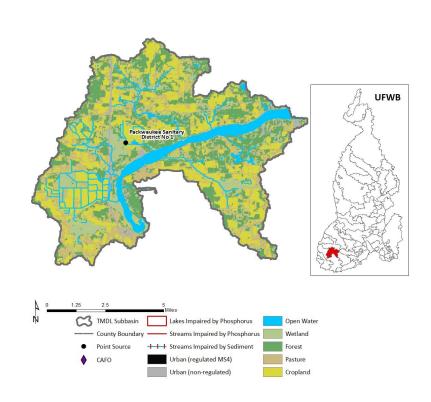
Next Steps


- 1. Update your Lake Management Plan & Nine Key Element Watershed Plan.
 - Strategies to minimize external nutrient load
 - Work with Marquette County / DNR to implement Plan strategies.
- 2. Develop contingencies to implement when conditions warrant plant protection.
 - Stop harvesting if plant decline starts (triggers).
 - Protecting remaining plants is critical for water quality and DO.
 - Increase water quality sampling
- 3. Develop a harvesting strategy that assists with lane integrity.
 - GPS on harvesters, additional buoys, etc.
 - DNR fully understands the need for harvesting on Buffalo Lake.

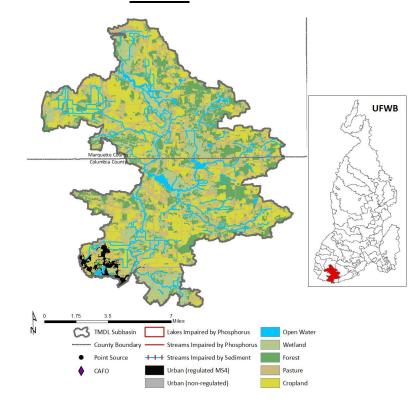
Questions?



Agricultural Nonpoint TP lb/year



Agricultural Nonpoint TSS lb/year



Sub-Basins within proximity to Buffalo Lake (2 of the highest 4 loading sub-basins)

Buffalo Lake Sub-Basin

Buffalo Lake Inlet Sub-Basin

		July 21, 2024	August 19, 2024	Sept 10, 2024	Oct 20, 2024	May 11, 2025	June 8, 2025	July 13, 2025
	DNR Max							
00		0.0400	0.000	0.0050	0.0470	0.007	0.0040	0.045
Ox Creek Cty Rd C	0.075	0.0433		0.0259				
Fox River Hwy 22	0.10	0.046	0.153	0.119	0.0505	0.0536	0.137	0.12
Page Creek Cty Rd K	0.075	0.0429	0.066	0.0326	0.0178	0.0701	0.0649	0.158
Fox River Cty Rd O	0.10	0.243	0.098	0.062	0.042	0.0898	0.0931	0.165
Chapman Creek Gale Dr	0.075	no test this month	0.0439	0.0319	0.179	0.0446	0.165	0.182
Chapman Creek Cty Rd CX	0.075	0.387	0.589	0.121	0.0856	0.136	0.251	0.135
Allen Creek 7th	0.075	0.0299	0.027	0.0221	0.0297	0.0489	0.0484	0.153
Mad River	0.075	0.028	0.085	0.0638	0.0258	0.0489	0.14	0.0794
red means exceeds allowable	mg/l							
Turbidity- Measured in CM - Goal - min of 106cm								
Ox Creek Cty Rd C		117	120	120	120	66	120	120
Fox River Hwy 22		65	52	49	40	28	36	28
Page Creek Cty Rd K		120	58	65	76	120	120	105
Fox River Cty Rd O		65	52	49	40	40.00	36	28
Chapman Creek Gale Dr		No test this month	110	116	19	120	65	110
Chapman Creek Cty Rd CX		118	72	120	52	55	70	120
Allen Creek 7th		118	120	120	38	55	60	103
Mad River		38	46	60	45	35	50	75
		_						

CONNECT WITH US

@WIDNR

@WI_DNR

/WIDNRTV

"WILD WISCONSIN: OFF THE RECORD"